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Abstract: Absorption tomography is an imaging technique that has been used simultaneously 
to image multiple scalar parameters, such as temperature and species concentration for 
combustion diagnostics. Practical combustors, such as internal combustion engines and gas 
turbine engines, only allow limited optical access, and typically a few (ca. 20-40) beams are 
available to probe the domain of interest. With such limited spatial sampling, it is non-trivial 
to optimize beam arrangement for a faithful reconstruction. Previous efforts on beam 
optimization rely on either heuristic/empirical methods lacking rigorous mathematical 
derivation or were derived by assuming certain prior information in the tomographic 
inversion. This paper aims to develop an approach that is expected to be especially useful 
when prior information is not easily available or intended to be included in the inversion 
processes. We demonstrate that the orthogonality between rows of the weight matrix directly 
correlates with reconstruction fidelity and can be used as an effective predictor for beam 
optimization. A systematic comparison between our method and the existing ones in the 
literature suggests the validity of our method. We expect this method to be valuable for not 
only the absorption tomography but also other tomographic modalities. 
© 2017 Optical Society of America 
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1. Introduction 

Optical imaging techniques are indispensable for studies of complex turbulent combustion, 
which is dominated by the interplay between turbulence, chemical kinetics, and transport 
phenomena [1, 2]. Those techniques can be generalized into two categories, namely planar 
imaging [3–5] and computational imaging methods [6–8]. The former category typically 
requires a substantial optical access to deploy both excitation and detection paths. However, 
in practical applications such as engine diagnostics, the available optical access is extremely 
limited, making the planar imaging techniques impractical for implementation. The second 
category is the computational imaging methods, which can be further divided into light field 
imaging [9] and tomography [10–13]. The light field imaging can achieve 3D spatial 
resolution with a single camera, but usually needs a large field of view (FOV) for signal 
collection and again, it is not suitable for engine measurements. On the other hand, 
tomography is a method that reconstructs the target field from its cross-sectional projections 
[14]. Among all these tomographic modalities, tomographic absorption spectroscopy (TAS) is 
the most promising one as it inherits the advantages of both absorption spectroscopy and 
tomography, including 2D spatial resolution, species-specificity, and versatility [15]. Due to 
the recent progress in semiconductor lasers [16], frequency-agile light sources [17], and 
advanced spectroscopic schemes [18–20], TAS is developing into a technique that provides 
an unprecedented opportunity for combustion diagnostics [21]. Furthermore, with the 
development of fiber optics and the theory of compressed sensing [22], TAS can be 
implemented with minimal optical access, which is highly desirable for engine diagnostics. 
For example, TAS has been demonstrated on a multi-cylinder automotive engine for imaging 
of hydrocarbon vapor with only 27 beams [23]. A spatially-resolved and observer-free 
method had been developed recently for the quantification of the spatial resolution for a 
similar sparse-sampling system with 31 beams [24]. With such limited spatial sampling, it is 
non-trivial to arrange the beams in an optimal way to obtain the richest spatial information for 
both acceptable reconstruction fidelity and spatial resolution. 

Numerous methods have been proposed to achieve an optimal beam configuration. All 
these methods tried to define either a qualitative or a quantitative indicator that can be used to 
predict the reconstruction fidelity. Terzija et al proposed a beam optimization strategy that 
relies on a hypothesis that the reconstruction can be improved by maximizing discrepancies 
between the beams in the Radon space [25]. Song et al developed the so-called grid weight 
factor (GWF) method to predict the best beam configuration out of four candidates [26]. 
However, both methods are heuristic/empirical and lacking solid mathematical foundation. 
Twynstra et al mathematically proved that the Frobenius distance between the so-called 
resolution matrix and identity matrix directly correlates with the reconstruction error [27–29]. 
Since the resolution matrix was derived by incorporation of a smoothness prior, it is 
especially useful for the data-limited cases, in which inclusion of even an uninformative prior 
can significantly improve the reconstruction accuracy. Analogically, more informative prior 
information such as a noise model and the spatial covariance of the fluctuating concentration 
field can also be incorporated into a maximum a posteriori (MAP) estimate through Bayesian 
formulation to derive a possible indicator [30]. Grauer et al proved that the MAP uncertainty, 
which can be quantified by the trace of the so-called posterior covariance matrix, is also a 
good predictor for the reconstruction error [30]. Both approaches illustrate how an indicator 
can/should be designed for beam optimization by explicit consideration of the available a 
priori information at an early stage of implementing the TAS system. 

In this work we aim to introduce an alternative approach, which treats the spatial sampling 
and regularization as separate and independent issues. In this approach, we hypothesize that 
the orthogonality between the rows of the weight matrix is directly correlated with the 
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reconstruction accuracy. Thus, by maximizing the orthogonality between the subspaces 
defined by the rows of the weight matrix, which are determined by the physical positions of 
beams, a good reconstruction can be obtained. Since this method is derived only from the 
weight matrix without any assumptions of the target flow field, we expect it to be especially 
useful for cases in which a priori information is not easily available or is intended to be 
incorporated in the reconstruction processes. We consider our method to be complementary to 
the existing ones that were derived by assuming certain prior information. Later in this paper, 
we will first derive and validate our method, and then compare it with the existing 
representative methods to show its validity. 

The remainder of the paper is organized as follows: Section 2 first describes mathematical 
formulation of both tomographic inversion and beam optimization methods; and then briefly 
reviews the simulated annealing (SA) algorithm that is necessary for a beam optimization 
process; Section 3 proposes our beam optimization method and discusses the comparison 
results obtained from simulative experiments; and finally the last section summarizes this 
work. 

2. Development of a beam optimization method 

2.1 Mathematical formulation of absorption tomography 

The mathematical formulation of absorption tomography has been discussed extensively [31, 
32] and we provide a brief summary here for the readers’ convenience. The definition of the 
coordinate system is shown in Fig. 1. 

 

Fig. 1. Definition of the coordinate system and the specifications for the i-th beam transecting 
the tomography field. 

Intuitively, the positions of all beams are specified by φ = {φ1,φ2,...,φK} with φi = [di,θi]
Τ, 

where di is the perpendicular distance from the i-th beam to the origin which is defined as the 
center of the tomography field, θi is the angle formed between the beam and the positive 
direction of the x axis, and subscript K is the total number of beams utilized in this 
experiment. As the i-th monochromatic beam produced from the emitter, traversing the 
tomography field, and picked up by the detector, its intensity is attenuated due to absorption 
of the target species. The corresponding absorbance can be derived from Beer-Lambert law 
and is given as: 

 ( ), 0, 0
ln ( ) / ( ) ( , ) .

i

L

t i ip I I f l dlν ν ν= − =   (1) 

where I0,i and It,i are the incident and transmitted light intensities respectively; and f(l, ν) is the 
profile of absorption coefficient along the line-of-sight (LOS) and at a frequency of ν, and is a 
function of the absorbing species concentration, gas temperature, and pressure along LOS. By 
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discretizing the tomography field into n2 square pixels, each of which contains a uniform gas 
with respect to the reconstructed property (e.g. the absorption coefficient), Eq. (1) can be 
approximated by a “ray-sum” as 

 
1

2

.
n

ij j i

j

A f p
=

=⋅  (2) 

where Aij represents the chord length of the i-th beam within the j-th pixel, and fj is the 
absorption coefficient of the j-th pixel. It has to be noted that during this approximation 
process, an artificial error, the so-called discretization error is introduced as physically the 
target field is continuous rather than discrete. Repeating Eq. (2) for all beams results in a 
linear equation system that can be described as: 

 .pA f =⋅
 

 (3) 

where A is the weight matrix, f


 the distribution of absorption coefficient arranged into a 

column vector, and p


 the LOS measurements. 

In practical applications, only a limited number of beams are available making the linear 
equation system rank-deficient [33]. To maximize the sampling efficiency, the probing beams 
are usually arranged in an irregular manner e.g. as used in [25]. The ART algorithm is an 
iterative reconstructed method that is often used in this case to solve the equation system and 
can be described as 

 
1

1
2

2

,
T n

n n Ti i
i

T
i

A f p
f f A

A
β

−
−=

⋅ −
+ ⋅ ⋅

 
  

  (4) 

where the superscript n indicates the iteration number; the subscript i represents the i-th beam 

(i = 1,2,…,K) and; β∈(0,2] is the relaxation factor; iA


 is the row vector from the i-th row of 

the weight matrix A. Figure 2 illustrates how the iterative process (i.e. Eq. (4)) can be 
interpreted from a geometrical perspective. For simplicity, only two beams are assumed in 
this case and the relaxation factor β is set to unity. In the figure, the coordinate system V-O-W 
is defined in the 2-dimensional vector space; and the purple lines S1 and S2 stand for 

subspaces with the normal vectors of 1A


 and 2A


, respectively. The iteration usually starts 

from a guess solution 0f


 and progressively approaches the final solution f


 through 

alternative projections from the current solution to the two subspaces. Each projection 
essentially updates the solution by adding a correction vector (represented as a red line) to the 
current solution. When β≠1, the correction vector will either be stretched (β>1) or compressed 
(β<1) leading to either faster or slower convergence. Obviously, the convergence can be 
accelerated by maximizing the angle between the two subspaces. For example, when S2 is 
orthogonal to S1, only two iterations are necessary to reach the convergence. For the 

numerical experiments conducted in the following sections, 0f


 is set to a vector of zeros for 

simplicity. 
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Fig. 2. Schematic of the iterative process of the ART algorithm. 

2.2 Methods for beam optimization 

It is well-recognized that the beam arrangement greatly influences the reconstruction quality 
[25, 26, 28]. This paper aims to develop a new method to optimize the beam set denoted 
above as φ to achieve the best tomographic performance in terms of reconstruction accuracy. 
In the following sub-sections, we first introduce two representative beam optimization 
methods in literature and then propose our method. 

The first method in literature was derived rigorously and relies on the so-called resolution 
matrix, the detailed derivation of which can be found in [28, 30]. We briefly summarize it 
here for the readers’ convenience. To alleviate the ill-posedness of the TAS problem, the 
constrained Tikhonov regularization, which enforces both non-negativity and smoothness, 
can be incorporated into Eq. (3) and the inversion process is cast into a minimization problem 
as 

 

2

2

arg min . . 0,
0f

A p
f f s t f

Lλ λλ

     = − ≥    ⋅     
  (5) 

where fλ is the regularized solution, λ the regularization factor, and L the Laplacian matrix 
defined as 

 

1 if

1/ if neighbors ,

0 otherwise
ij

i j

L w j i

= 
 = − 
 
 

 (6) 

where w is the total number of grids neighboring the i-th grid. 
The least square solution to Tikhonov regularization can be obtained as 

 

2 1

#

# #

# #

#

( )

( )

( ) ,
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T T T

exact error

exact error

exact exact error

exact exact error

f A A L L A p

A p p

A Af A p

f A A I f A p

f R I f A p
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= +
= +

= + − +

= + − +

 (7) 
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where R is the so-called resolution matrix and I the identity matrix. The latter two terms in the 
equation are the errors caused by regulation and measurement noise, respectively. It has been 
shown that by choosing a proper λ, the error caused by noise is negligible [28]. In this case, 
the regularization error should be minimized for an optimal solution. This can be done by 
minimizing the Frobenius distance between R and I as 

 2( ) || ( )- || .RM FF R Iφ φ=  (8) 

It has to be noted that the incorporation of smoothness prior provides additional linear 
equations. Through singular value decomposition (SVD) of the augmented matrix [A; λL], we 
found the prior can essentially provide additional n2-K non-trivial singular values to help span 
the null space of the equation system. However, it can potentially alter the original K singular 
values of A when λ is over-estimated, suggesting the smoothness condition distorts the 
information provided by the spatial sampling [34]. Thus, the parameter λ should be chosen in 
such a way that the largest K of n2 singular values of the augmented matrix do not overwhelm 
the original K nontrivial singular values. 

The second method in literature relies on a predictor i.e. the so-called grid weighted factor 
(GWF) [26] and is defined as 

 
2

2
1

1 1

1
/ .

2

n m

GWF i
j i

F n−
= =

 
=  
 
  (9) 

where m represents the total number of beams passing though the j-th grid. Unfortunately, no 
rigorous derivation is available for this approach. 

As noted above, the two representative methods rely on either a heuristic indicator or was 
derived by explicit incorporation of certain prior information in the tomographic inversion. 
Here, we aim to develop an approach, which is expected to be especially useful when prior 
information is not easily available or intended to be included implicitly through e.g. iterative 
algorithms. As illustrated in Fig. 2, when two subspaces are orthogonal, the fastest 
convergence can be achieved. Such orthogonality also means the two corresponding linear 
equations are linearly independent from each other. In this case, the spatial sampling using 
these two beams is exploited to the maximum extent and provides the most useful information 
of the flow field. To quantify the linear independency between any beam pairs, we propose 
the concept of orthogonal degree (OD). The OD between the i-th and j-th beams is defined as 

 , .
|| || || ||

i j
i j

i j

A A
OD

A A

⋅
=

⋅

 

   (10) 

To illustrate this concept, a simple tomographic example with a 3 × 3 discretization is 
depicted in Fig. 3. Four beams are used to probe the domain of interest in this case. The 
normal vectors of the corresponding subspaces are defined as 

 

1

2

3

4

(1,0,0,1,0,0,1,0,0)
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(0,0,0,1,1,1,0,0,0)

T

T

T

T

A

A

A

A

=

=

=

=









 (11) 

It has to be noted that OD is not the cosine value of the angle between the two beams in 
the physical space but the angle between their corresponding subspaces in the 9D vector 
space. For example, Beams 1 and 2 are parallel in the physical space but their corresponding 
subspaces are orthogonal; on the other hand, Beams 1 and 3 are orthogonal in the physical 
space but their corresponding subspaces are angled. It has to be noted that every element of 

iA


 and jA


is non-negative, leading to an OD ranging from zero to unity. When two beams 
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transecting the same set of pixels, the corresponding OD is either unity or close to unity, 
meaning the two beams essentially providing the same or very similar spatial information. 

 

Fig. 3. Illustration of the concept of orthogonality degree with a 3 × 3 tomographic problem. 

The OD of all beam pairs can be calculated and arranged in a matrix format (referred to as 
MOD hereafter) as follows: 
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φ
−

×

 
 
 
 =
 
 
 
 





 

   

 

 (12) 

Intuitively, the beam optimization problem can be cast into a minimization problem whose 
cost function can be defined as e.g. the average value or the weighted summation of all 
elements in the matrix. However, such definitions are ensemble parameters, which cannot 
reflect the value of a specific element. If any element in MOD is large, the two corresponding 
beams are providing very similar spatial information, making one of the beams redundant. 
For this reason, the cost function should be designed to ensure every element in MOD to be 
small so as to avoid such beam pairs. Thus, we define the cost function for the minimization 
problem as follow: 

 ( ) max( ( ) ),MODF MOD Iφ φ= −  (13) 

where max( )⋅  returns the maximum element of a matrix. It has to be noted that MOD is a 

symmetrical matrix and only upper triangular part of it needs to be calculated for each 
function evaluation to avoid redundant computation. An identity matrix is subtracted from 
MOD to remove the elements on the diagonal, each element of which presents the OD of a 
line with itself. Subsequently, the minimization problem can be solved using a standard 
global optimizer such as the simulated annealing (SA) algorithm [35, 36], which will be the 
topic of the following chapter. 
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2.3 Simulated annealing algorithm 

The simulated annealing (SA) algorithm was proposed in 1983 [37] and has been 
demonstrated as a powerful tool to pinpoint the global minimum that is buried under a 
plethora of local minima. The SA algorithm numerically simulates an annealing process in 
which a material is first heated until it melts and then gradually cools until it crystalizes into a 
state with a minimum thermodynamic free energy [38]. In the algorithm, the cost function f is 
analogous to the free energy of the material that has to be reduced. A parameter T is used in 
this algorithm to model the physical temperature and control the possibility of random walks 
according to the Metropolis criterion [39] as 

 

if ( ) ( ) 0, accept the ,

else if exp( / ), accept the ,

else remain .

new new

new

f f f

rand f T

φ φ φ
φ

φ

Δ = − ≤
< −Δ

 

  (14) 

where φnew is the new solution generated by adding a random disturbance to the current 
solution φ ; rand is a function that generates random numbers uniformly within (0, 1). During 
the annealing process, the new solution φnew is always accepted if its cost function is smaller; 
otherwise it can be accepted with a probability of exp(-∆f/T). Such mechanism enables the 
algorithm to escape local minima. As T decreases, the algorithm is less and less likely to 
accept a new solution with a larger function value; and gradually it will converge to the global 
solution. 

The flow chart shown in Fig. 4 provides a detailed description of the algorithm 
customized for the beam optimization problem. At the beginning, the algorithm is initialized 
by setting parameters including the upper and lower bounds for the variables and the initial 
temperature T0. During the optimization process, the optimal solution φopt and the 
corresponding cost function f(φopt) are recorded for each loop, within which a new solution 
φnew is created and the corresponding function value f(φnew) is then calculated. The solution is 
accepted or rejected according to the Metropolis criterion as defined in Eq. (13). This process 
is repeated for a certain times before each temperature reduction, which can be realized by 
setting T = T × α, where α is a positive constant and is smaller than unity. Here, α is set to 
0.85 as suggested in [36]. The initial temperature T0 is selected in such a way that the random 
walks at the initial temperature state can cover the whole searching space. The algorithm will 
be terminated when the relative change of f(φopt) between several consecutive temperature 
states is insignificant i.e. smaller than a small positive number e.g. 10−3. 
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Fig. 4. Flow chart of the SA algorithm customized for the beam optimization problem. 

3. Results and discussions 

3.1 Demonstration of the new method 

To verify our hypothesis that the cost function FMOD defined above is an effective predictor 
for the reconstruction error, we performed proof-of-concept numerical demonstrations on all 
three methods for comparison. To facilitate discussion we refer to the methods using FMOD, 
FRM, FGWF as MOD, RM, and GWF, respectively hereafter. It is assumed that 32 beams, 
which can be arranged freely, are used to probe the flow field. The beam optimization 
problem can then be cast into a minimization problem with a total number of 64 variables (i.e. 
32 for d’s and 32 for θ’s). The minimization problems with FMOD, FRM, FGWF can then be 
solved using the SA algorithm introduced in the previous chapter. The evolution of the cost 
functions (labelled as red lines with solid circles) are plotted individually in each panel of 
Fig. 5 as a function of the # of T reductions. The curve was normalized as only the relative 
change is important here. 

 

Fig. 5. The evolution of the cost functions along with the corresponding reconstruction errors 
from both ART and Tikhonov reconstruction for GWF, RM, and MOD respectively. 

It has to be pointed out that, for RM, the optimal regularization factor λ varies with φ (i.e. 
beam configuration) for a given discretization and should be chosen in such a way that the 
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largest 32 of 100 non-trivial singular values of [A; λL] do not overwhelm the original 32 
nontrivial singular values. Figure 6 shows how λ is determined for an example beam 
arrangement i.e. the one optimized by RM in Panel (b) of Fig. 5. The singular values of A and 
[A; λL] with various λ’s are shown in the figure. As can be seen, when λ = 1, the largest 
singular values of the augmented matrix start to overwhelm counterpart of A, indicating the 
optimal value of λ lies between 0.1 and 1 [28]. So, for this case optimal λ was chosen to be 
0.5. Similar procedures were taken consistently to determine λ for other cases to make sure 
RM work properly. On the other hand, no additional assumption about the flow field is 
considered in the optimization processes of MOD and GWF but only the spatial sampling i.e. 
the beam configuration. 

 

Fig. 6. Singular values of the weight matrix A and the augmented matrices [A; λL] using 
various λ for the optimized beam arrangement by RM as shown in Panel (b) of Fig. 5. 

To study the correlation between FMOD, FRM, FGWF and the reconstruction error, for each 
method, we took the optimal beam arrangement at each T, and tested them with a 
representative phantom shown in the Panel (a) of Fig. 7, which features two Gaussian peaks 
mimicking the multi-modal situations encountered in combustion applications. It has to be 
noted that the magnitude of the target field is arbitrarily set here since only the relative 
variations within the field will affect the tomographic inversion. The 32 LOS absorption 
‘measurements’ were artificially simulated with the phantom and the beam configurations. 

Tomographic inversions were then performed using both ART and Tikhonov 
reconstruction. The reconstruction errors were quantified by 

 exa exa

2 2
/ ,ct rec cte f f f= −  (15) 

where exactf  represents the phantom and recf  the reconstruction respectively. 

                                                                                             Vol. 25, No. 6 | 20 Mar 2017 | OPTICS EXPRESS 5992 



 

Fig. 7. Representative phantoms used for simulative studies. 

The corresponding reconstruction errors are then plotted for all methods in three panels of 
Fig. 5. The r2 correlation between the cost functions and the reconstruction errors from both 
ART and Tikhonov reconstruction are also calculated for each case and labeled as 2

ARTr  and 
2

Tikr  respectively. As indicated by the r2 correlation, both FRM and FGWF follow the 

reconstruction errors throughout the optimization process more closely than FMOD; however, 
GWF landed in a huge error and RM in a small one but is still larger than MOD. The results 
shown in Fig. 5 suggest that a good r2 correlation does not necessarily qualify an effective 
predictor. To show how MOD works, a video (see Visualization 1) was made visually to 
present the evolution of both the beam arrangement being optimized and the corresponding 
reconstructions from ART. 

We also tested these methods on other representative phantoms as shown in Panel (b) and 
(c) of Fig. 7 respectively. The second phantom was designed to test the beam optimization 
methods on flames featuring shape edges such as a McKenna flame [40]. The third phantom 
was used to simulate a turbulent flame with more complex structures. The same conclusion 
was drawn from these studies. 

3.2 Comparison of various beam arrangements 

To demonstrate how beam optimization can improve the reconstruction quality for the case 
discussed in Section 3.1 i.e. the one with 10 × 10 discretization, we compare here a few 
representative beam configurations, which are, plotted both in the physical space shown as 
Fig. 8(a) and the so-called Radon space [28] shown as Fig. 8(b). Beam arrangements #1 
(parallel beams) and #2 (fanned beams) represent the commonly adopted beam sampling 
strategies which distribute the beams uniformly within each projection; Beam arrangement #3 
and #4 had been used in practical applications in which the beams are deployed in an irregular 
and sparse manner [25]; and the remaining three arrangements #5, #6, and #7 are those 
optimized with GWF, RM and MOD respectively. 
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Fig. 8. (a). Seven example beam configurations represented in the physical space. (b). Seven 
example beam configurations represented in the Radon space. 

Again, numerical studies were performed on these phantoms. Tomographic inversions 
were carried out with each of these beam arrangements by using the ART algorithm, and the 
corresponding reconstructions for Phantom 1 are shown in Fig. 9. As can be seen, the 
reconstructions vary dramatically from case to case, indicating spatial sampling has a critical 
effect on the reconstruction accuracy. Beam arrangements #1 and #2 result in a poor 
reconstruction quality due to the insufficient sampling of the marginal areas especially the 
corners of the tomography field. The irregular and sparse beam arrangements (#3 and #4) 
shown in Figs. 8(a) and 8(b) acquired poor reconstructions even though it had been shown to 
produce good reconstruction quality by applying an iterative method and a median filter 
dozens of times [25]. However, in this case the good performance is attributed to the 
smoothness regularization enforced by the median filter rather than the spatial sampling itself. 
The regularization for tomographic inversion is a separate topic which will not be discussed 
in detail here. Excellent discussion on regularization can be found in [32, 33]. In the Beam 
arrangement of #5, most of the beams were arranged at an angle of either π/4 or 3π/4 since 
maximizing Eq. (9) will enforce the beams to 1) traverse as many pixels as possible; and 2) 
avoid sampling the same pixels since the weight contributing to GWF will decay 
exponentially when the number of beams passing a pixel increases. Both beam arrangements 
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#6 and #7 led to better reconstructions than the others. The beam arrangement #7 features the 
smallest OD i.e. the lowest linear dependencies between all beam pairs, providing the richest 
spatial information for tomographic reconstruction. We also tested the two optimized beam 
arrangements from RM and MOD using the Tikhonov reconstruction [28]. The corresponding 
results are shown in Fig. 10. Panel (a) and (b) are from the Tikhonov reconstruction by setting 
λ as 0.5; and Panel (c) and (d) are results of λ = 0.05. As can be seen, the RM method 
outperforms MOD for λ = 0.5. This is understandable as when the regularization is relatively 
strong, the error caused by regularization dominates, and the RM method can effectively 
reduce the regularization error. On the other hand, when the regularization is relatively weak, 
the error caused by insufficient spatial sampling overwhelms the regularization error. In this 
case, MOD wins. Tikhonov reconstruction presents similar performance to ART when λ = 
0.05. Since the MOD method is derived based on only the spatial sampling without any 
assumptions about the flow field, we expect it to be especially useful for cases when prior 
information is not easily available or embedded during the inversion processes. On the other 
hand, the RM method is recommended when a smoothness prior can be assumed. However, 
we want to point out that MOD is not expelling to any regularization in nature. Regularization 
can always been incorporated in the tomographic inversion either explicitly or implicitly. For 
example, the ART algorithm used here essentially entails an implicit prior information that 
the best solution is the one with maximum entropy (see [41] for more details). However, since 
ART only updates the pixels that are traversed by the sampling beams, when the arranged 
beams cannot cover all the pixels, the pixels uncovered will be remain as the initial guess. In 
this case, prior information e.g. smoothness, which can connect the pixels that are covered 
and uncovered should be used instead. 

 

Fig. 9. Reconstructions for the beam arrangements shown in Figs. 8(a) and 8(b) using the ART 
algorithm. 

From the comparisons discussed above we can conclude that 1) the reconstruction quality 
can be improved substantially using the optimized arrangements; 2) The arrangement 
optimized by MOD outperforms the others. The same conclusions are obtained for other 
phantoms as will be discussed in the following sub-sections. 
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Fig. 10. Reconstructions for the beam arrangements shown in Panel #6 and #7 of Fig. 8(a) 
using the Tikhonov regularization method. Panel (a) and (b) are from Tikhonov reconstruction 
by setting λ as 0.5; and Panel (c) and (d) are results of λ = 0.05. 

3.3 Effects of noise on reconstruction accuracy 

To examine the performance of the above-mentioned beam arrangements under noisy 
conditions, we repeated the reconstruction processes by adding 5% uniform noise to the LOS 
measurements i.e. the RHS of Eq. (3). Due to the obvious superiority of MOD and RM, we 
repeated the simulative studies shown above with the beam arrangements optimized with 
these two methods. The corresponding reconstructions are shown in Fig. 11. Panel (a) and (c) 
are the reconstructions for Phantom 1 and Phantom 3 respectively using the optimized beam 
arrangement from RM; and Panel (b) and (d) are the counterparts of Panel (a) and (b) using 
the MOD method. 
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Fig. 11. Panel (a) and (c) are the reconstructions for Phantom 1 and Phantom 3 using the 
optimized beam arrangement from RM; and Panel (b) and (d) are the counterparts of Panel (a) 
and (b) using the MOD method. The ART algorithm was used in these cases. 

Again, the optimized beam arrangement from MOD achieved a better reconstruction than 
RM for both Phantom 1 and 3. The results shown in Panel (b) of Fig. 11 reveal that MOD 
successfully recovered the twin peak within the Phantom 1 even though RM failed. Thus, 
another advantage of MOD is its good noise immunity. This merit is extremely desirable for 
harsh combustion environment where the tomographic system suffers from window fouling 
and mechanical vibration [42]. 

To further validate our method, we tested GWF, RM, and MOD on more phantoms with 
the results plotted in Fig. 12. Panel (a) shows the reconstruction errors for 100 phantoms 
which are generated by randomly adjust the positions of the twin Gaussian peaks in Phantom 
1. The blue line with triangles, red line with circles, and black line with squares represent the 
results for GWF, RM, and MOD respectively. Panel (b) is the counterpart of Panel (a) but 
with another 100 phantoms which are generated by randomly adjust the positions of the 
square and the Gaussian peak in Phantom 2. As can be seen, MOD consistently outperforms 
GWF and RM for all these phantoms. 
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Fig. 12. Panel (a) shows the reconstruction errors for 100 phantoms which are generated by 
randomly adjust the positions of the twin Gaussian peaks in Phantom 1; and Panel (b) is the 
counterpart of Panel (a) but with another 100 phantoms which are generated by randomly 
adjust the positions of the square and the Gaussian peak in Phantom 2. 

3.4 Further analysis on beam optimization 

To further analyze our method, we tested it with five more cases. The simulation conditions 
for those cases are summarized in Table 1. 

Table 1. Summary of simulation conditions for five beam optimization cases. 

 Case 1 Case 2 Case 3 Case 4 Case 5 

discretization 10 × 10 10 × 10 10 × 10 20 × 20 20 × 20 
# of beams 20 32 44 40 68 

The optimized beam arrangements for all cases are plotted in the physical space as shown 
in the first row of Fig. 13; and the corresponding Radon plots are shown in the second row. 
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Fig. 13. Five beam optimization cases using MOD. The first row shows the optimized beam 
arrangements in the physical space; and the second row is the counterpart of the first row in the 
Radon space. 

By analyzing the optimized beam arrangements and Radon plots in Fig. 13, a common 
phenomenon can be observed. For those cases, all the rows are transected by a set of quasi-
horizontal beams, the corresponding subspaces of which are orthogonal in the vector space. 
The beams arranged in this way are most effective in reducing the cost function FMOD. 
Similarly, all the columns are transected by a set of quasi-vertical beams. The remaining 
beams are distributed almost symmetrically and uniformly around the origin within other 
projections. 

4. Conclusion 

In summary, this paper proposes a new beam optimization method which aims to increase the 
linear independencies between the equations defined by the probing beams. The numerical 
studies performed in this work validated its effectiveness and good noise immunity. Since our 
method is derived without any pre-assumption of the target flow field such as smoothness, we 
expect it to be especially useful when prior information is not easily available or intended to 
be embedded in tomographic reconstructions at a later stage, making it a perfect complement 
to the existing methods. Moreover, accelerated convergence is possible if a projections-onto-
convex-sets algorithm such as ART is used for tomographic inversion. Finally, we want to 
point out that this method is not limited to absorption tomography but can also be applied to 
any tomographic modalities such as interferometric tomography [43] and deflectometric 
tomography [44], etc. 
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