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Abstract: Three-dimensional (3D) measurements are highly desirable both 
for fundamental combustion research and practical monitoring and control 
of combustion systems. This work discusses a 3D diagnostic based on 
tomographic chemiluminescence (TC) to address this measurement need. 
The major contributions of this work are threefold. First, a hybrid algorithm 
is developed to solve the 3D TC problem. The algorithm was demonstrated 
in extensive tests, both numerical and experimental, to yield 3D 
reconstruction with high fidelity. Second, an experimental approach was 
designed to enable quantifiable metrics for examining key aspects of the 3D 
TC technique, including its spatial resolution and reconstruction accuracy. 
Third, based on the reconstruction algorithm and experimental results, we 
investigated the effects of the view orientations. The results suggested that 
for an unknown flame, it is better to use projections measured from random 
orientations than restricted orientations (e.g., coplanar orientations). These 
findings are expected to provide insights to the fundamental capabilities of 
the TC technique, and also to facilitate its practical application. 
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1. Introduction 

Chemiluminescence from combustion radicals (e.g., OH*, CH*, CO2*, and C2*) represents a 
unique diagnostic opportunity in reactive flows, both for fundamental study and practical 
deployment. Diagnostics based on chemiluminescence can be substantially simpler and easier 
to implement than other optical diagnostics, yet provide measurements which are otherwise 
challenging to obtain. Most combustion diagnostics require laser sources and/or external 
seeding, which are usually costly, cumbersome, or even infeasible [1, 2]. In contrast, 
diagnostics based on chemiluminescence bypass such requirements since chemiluminescence 
is emitted naturally in combustion processes. In spite of the simplicity, chemiluminescence 
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provides information about key combustion quantities which are challenging to obtain, with 
the rate of heat release and local equivalence ratio being two notable examples. Both 
quantities are critical for the fundamental understanding of combustion instability, a 
phenomenon that can lead to reduced efficiency or even the destruction of gas turbines and 
aero-propulsion systems [3]. 

Here, we briefly review common techniques from our perspective to motivate 
chemiluminescence-based techniques. Existing techniques for the measurement of local 
equivalent ratio are typically based on 1) laser induced fluorescence (LIF) to track a fuel 
marker [2, 3], 2) Raman scattering to measure fuel concentration [2, 3], or 3) 
chemiluminescence from two combustion radicals (e.g., OH* and CH*) [3–5]. All three types 
of techniques have been relatively well-established, and have become standard diagnostic 
tools for combustion research. Both LIF and Raman techniques require high power lasers. 
The fuel marker introduced may not faithfully track the fuel vapor due to its different physical 
and chemical properties than the fuel vapor [1, 6, 7]. Furthermore, the quantification of LIF 
signal is complicated due to specie- and temperature-dependent quenching rates. Application 
of Raman techniques is restricted to “clean” environment (free from particulates, soot, and 
background luminosity) due to the relative low signal level of Raman scattering [1, 2]. For the 
rate of heat release, existing techniques are typically based on 1) LIF measurements of two 
species which are the reactants of a reaction whose rate correlates with rate of heat release [8, 
9], and 2) chemiluminescence measurements of radicals (typically OH* and CH*) whose 
concentration correlate with rate of heat release [5, 10]. The simultaneous LIF measurements 
of two flame species again require high power lasers, and the quantitative interpretation of 
LIF measurements is non-trivial due to species- and temperature-dependent quenching rates. 

The above discussion motivates the consideration of chemiluminescence for measuring 
local equivalence ratio and rate of heat release. Compared to LIF- or Raman-based 
techniques, chemiluminescence does not require laser sources and the interpretation of signal 
is relatively straightforward. These advantages significantly simplify the alignment and 
implementation, and are especially appealing for application in practical systems. 

The limitations of chemiluminescence-based techniques have also been well recognized. 
Chemiluminescence signal is also difficult to quantity and its applicable range has been 
extensively investigated in terms of temperature, pressure, equivalence ratio, and strain rate 
[3, 5, 11–13]. Out of all the limitations, the lack of spatial resolution perhaps represents the 
most important limitation of chemiluminescence-based techniques. 

Therefore, this work addresses the issue of spatial resolution of chemiluminescence-based 
techniques. Chemiluminescence is naturally emitted from the entire volume of combustion 
zones, resulting in its line-of-sight averaged nature. In contrast, LIF- or Raman-based 
techniques utilize signals artificially generated by laser illumination, and the illumination 
volume provides well-defined spatial resolution. Since spatially resolved measurements are 
highly desired for model validation and development, research efforts have been invested by 
several groups to achieve spatial-resolved chemiluminescence measurements. These efforts 
can be broadly divided into two approaches. 

The first approach approximates point-measurement of chemiluminescence by designing 
the collection system so that only the chemiluminescence emitted from a well-defined and 
relatively small volume is collected to the detector. This approach seems to originate from an 
intrusive probe first demonstrated in 1991 [14]. Non-intrusive implementations subsequently 
have been demonstrated using Cassegrain telescope optics [3–5, 11, 15, 16]. These 
implementations have achieved nominal spatial resolution on the order of 100-200 μm in 
diameter and 800-1600 μm in length [3, 17]. Extension of this pointwise approach to multiple 
dimension measurement could be accomplished by scanning the probe if the target flame is 
steady, or by employing multiple probes simultaneously. 

The second approach involves combining chemiluminescence with tomography to obtain 
spatially-resolved measurements in two-dimensional (2D) or 3D. Compared to the above 
pointwise approach, the tomographic chemiluminescence (TC) approach can provide 2D or 
3D measurements directly (i.e., without scanning), thusly providing valuable or even critical 
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structural information of turbulent flames. Early efforts, limited by hardware, typically relied 
on sequentially recorded projections or a few number of simultaneously projections to obtain 
2D measurements [18, 19]. Recent advancements in digital cameras, fiber optics, and 
computing technologies have provided the opportunity to simultaneously record projections 
from a relatively large number of view angles at high speed (thusly enabling high temporal 
resolution also), and subsequently process the projections via tomographic reconstruction to 
obtain 3D measurements. For instance, a customized camera with multiple lenses was 
reported in 2005 to capture projections from 40 view angles, based on which 3D tomographic 
reconstructions were performed to obtain 3D flame structure at 500 frame per second (fps) 
[20]. Similar implementation of this multi-lens camera system can also be realized using 
image fibers, as reported more recently [21, 22], to collect multiple projections to the same 
camera. Alternatively, multiple cameras can also be used to collect multiple projections [23], 
an attractive option given the increasingly affordable consumer/industrial cameras. These past 
efforts have demonstrated TC’s potential for 3D measurement with sub-millimeter spatial 
resolution and temporal resolution on the order of tens of microsecond, representing 
diagnostics capabilities solely needed. 

This work focuses on obtaining 3D measurements using tomographic chemiluminescence. 
More specifically, based on the past work reviewed above, this work 1) investigated 3D 
reconstruction algorithms and the use of regularization, 2) demonstrated an experimental 
approach to examine the performance of the 3D TC technique quantitatively, and 3) 
investigated the potential advantages of using projections from arbitrary view angles. In the 
next two sections, Sections 2 and 3, we first introduce the mathematical formulation of the 3D 
TC problem and the inversion algorithm, which is numerically validated in Section 4. 
Sections 5 and 6 describe the experimental approach and demonstration of the 3D TC 
technique. Based on these numerical and experimental results, Section 7 discusses the effects 
of view orientations on the reconstruction. Finally, Section 8 summarizes the paper. 

2. Mathematical formulation 

Figure 1 illustrates the mathematical formulation of the TC problem. Here we use F(x,y,z) to 
denote the 3D distribution of the chemiluminescence emission to be measured, which is 
proportional to the concentration of the radicals that emit the chemiluminescence (e.g., CH* 
or OH*). To perform tomography computationally, F is discretized into voxels in a Cartesian 
coordinate system (x-y-z) as shown. An imaging system records the 2D images of F on a 
camera (a CCD array in this work), and the image formed on the CCD array depends on its 
relative distance and orientation, specified by r (distance), θ (azimuth angle), and φ 
(inclination angle). Once the components in the imaging system (i.e., specifications of the 
lenses) are fixed, the image formed on the CCD array is uniquely determined by F, r, θ, and 
φ. We call the 2D images recorded on the CCD array projections, denoted as P(r, θ, φ). The 
relationship between P and F is: 

 ( , , ) ( , , ) ( , , ; , , )
x y z

i i i i i i

i i i

P r F x y z PSF x y z rθ φ θ φ= ⋅  (1) 

where ix, iy, iz are the indices of the voxel centered at (xi, yi, zi); and PSF is the point spread 
function defined as the projection formed by a point-source located at (xi, yi, zi) with unity 
intensity. Physically, Eq. (1) states that the projection is a weighted summation of the PSF 
across all voxels, and the weights are the value of the sought distribution. Now the 3D TC 
problem can be formally formulated as: 

Given a set of projections (Ps) measured at various distances and orientations, find 
F(x,y,z). 
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Fig. 1. Illustration of the mathematical formulation of volumetric tomographic. 

The PSF does not depend on the sought F. Therefore computationally, the PSFs are pre-
calculated for the measurement locations and orientations (defined by r, θ, and φ). However, 
the PSF requires relatively large memory due to the 3D nature of the problem. The size of the 
PSF depends (almost linearly) on the degree of discretization of F and the projection, i.e., the 
number of effective pixels on which a projection is recorded and resolved. In our work, with 
F discretized into 30 × 30 × 30 voxels and the projections recorded on ~1.6 × 105 pixels (a 
400 × 400 CCD array), the PSF at each view angle required more than 2 GB of memory. 
Similar memory demands were also reported in [23]. Strategies to mitigate such memory 
demand will be discussed in a separate publication, so that this current paper stays focused on 
the fundamental issues of solving the 3D TC problem. 

3. Tomographic inversion algorithm and regularization 

Various algorithms have been developed to solve the tomographic inversion problem as 
formulated above [18, 24]. In our opinion, a systematic comparison of these algorithms, 
which admittedly is a tremendous endeavor and is beyond the scope of this work, will be 
highly valuable for a wide spectrum of applications. This work developed a hybrid algorithm 
combining ART (Algebraic Reconstruction Technique) and minimization technique, in which 
the ART algorithm was used to provide an initial guess for the minimization algorithm. This 
hybrid algorithm is motivated by the following two observations made from previous 
tomography work under the context of combustion diagnostics, both from our own and other 
research groups. 

First, combustion applications, due to optical access and the dynamic nature combustion 
processes, typically have limited number of projections available, ranges from 2 [25, 26] to 
about 50 [20–23, 27]. In contrast, other applications (e.g., medical imaging) have significantly 
more projections (thousands and more) available. Well-established (and also mathematically 
exact) algorithms such as filtered back projection and Fourier reconstruction [24] do not work 
optimally with such limited projections available in combustion diagnostics. With the limited 
projections in combustion diagnostics, past results suggest that inversion method based on 
minimization can solve the tomography problem effectively in the presence of measurement 
noises [21, 26–29]. The tomography problem is cast into the following minimization problem: 

 2

, ,
min [ ( , , ) ( , , )] with respect to ( , , )

m cr
P r P r F x y z

θ φ
θ φ θ φ−      (2) 

where Pm represents the measured projections at (r, θ, φ), Pc the projection calculated at (r, θ, 
φ) with a given distribution according to Eq. (1), and the summation runs over all locations 
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and orientations of measurements. Equation (2) essentially seeks the F that best (in the least 
squares sense) reproduces the projection measurements. 

Second, certain properties of the sought distribution F are often known a priori in 
combustion diagnostics. For instance, the concentrations of radicals are nonnegative and 
bounded within a certain range, and the distribution is smooth due to heat and mass transfer. 
Therefore it is desirable to have an algorithm that can incorporate such a priori information 
when available to improve the reconstruction fidelity. The minimization technique described 
in Eq. (2) allows the flexible incorporation of a priori information via regularization. As 
shown below, instead of only minimizing the difference between measured and calculated 
projections as shown in Eq. (2), a regularization term (R) can be added: 

 2

, ,
min [ ( , , ) ( , , )] with respect to ( , , )( )

m cr
P r P r F x y zR F

θ φ
θ φ θ φ γ− + ×       (3) 

The regularization term is a function of F, and various mathematical expressions can be 
developed to quantify different types of a priori information of F [29, 30]. The regularization 
parameter, γ, is a preset constant that balances the relative weights of the first term and the 
regularization term [31]. In this work, γ was chosen using the guidelines provided in [31], and 
the optimal choice of γ is a nontrivial topic that deserves a seperate treatment. Incorporation 
of a priori information via regularization has been demonstrated effective to ameliorate the 
ill-posedness of the inversion problem due to limited projection data [30, 31]. 

These observations were confirmed by extensive numerical simulations for the TC 
problems. Some of these results are shown in Fig. 2 to Fig. 4 using various phantoms and 
variations of different algorithms, including ART as described in [23], our hybrid algorithm, 
MART (Multiplicative Algebraic Reconstruction Technique) as described in [32], and OSEM 
(Ordered Subset Expectation Maximization) as described in [33]. 

 

Fig. 2. Comparison of phantoms and reconstructions. 

The top row of Fig. 2 shows four of the phantoms tested in our numerical simulations. The 
four phantoms shown in Fig. 2 include (from left to right) 1) a circular and uniform 
distribution with two square regions having zero value (The color scale is such that dark red 
and dark blue, respectively, indicates highest and zero concentration of the target radical. The 
same color scale is used hereafter), 2) a circular and uniform distribution with a square region 
and two lines with different thickness having zero value, 3) a smooth and continuous 
distribution with two peaks, and 4) a CH* distribution obtained by simulating a turbulent 
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opposed-flow flame. All phantoms are discretized into 30 × 30 × 30 voxels. Figure 2 shows 
the fifteenth layer of the distribution. For phantoms 1, 2, and 3, the distribution is the same (as 
shown in the top row) on all layers to facilitate visualization; and for phantom 4, the 
distribution varies from layer to layer to simulate a turbulent flame. Phantoms 1 and 2 are 
created to simulate the flames experimentally tested, as detailed in Section 5. 

Rows 2 through 5 in Fig. 2 show the reconstruction obtained using ART and the hybrid 
algorithm, with and without regularization on the fifteen’s layer. Results obtained with 
regularization are labeled as RHybrid and RART (regularized-Hybrid and -ART). Figure 3 
shows the overall reconstruction error across all layers as defined by: 

 
, , , ,

, ,

x y z x y z

x y z

x y z

x y z

rec

i i i i i i

i i i

i i i

i i i

F F

e
F

−

=



 (4) 

where FRec represents the reconstructed distribution of the target radical. 
These results were obtained using projections measured from 8 view angles randomly 

chosen (but once chosen, these view angles were used in all algorithms to make the results 
comparable). To simulate practical conditions in our experiments, a 5% Gaussian noise was 
artificially added to the projections in these simulations. All algorithms were terminated when 
the relative change between two consecutive iterations was less than 10−3. 

 

Fig. 3. Comparison of overall reconstruction error using different algorithms. 

There are multiple criteria that can be used to quantify the reconstruction fidelity across 
algorithms other than the overall e defined in Eq. (4). For example, the correlation between 
the phantoms and reconstructions can also be used to quantify the reconstruction fidelity [23]. 
In all our tests, the RHybrid algorithms also outperformed other algorithms under the 
correlation criterion. Figure 4 examines the reconstruction fidelity by another criterion: the 
distribution of reconstructions on each voxel. Both the overall e as shown in Fig. 3 and the 
correlation criterion essentially averages the reconstruction error among all voxels in the 
measurement domain. However, the flame may not exist in all voxels and hence can bias both 
criteria. Therefore, Fig. 4 provides a detailed illustration of the reconstruction error. Here the 
error is defined as the absolute value of reconstruction discrepancy at each voxel, normalized 
by the maximum value of sought function over the measurement of interest. As Fig. 4 shows, 
both the RART and RHybrid algorithm improved the reconstruction fidelity within the flame 

#175611 - $15.00 USD Received 5 Sep 2012; revised 1 Nov 2012; accepted 1 Jan 2013; published 13 Mar 2013
(C) 2013 OSA 25 March 2013 / Vol. 21,  No. 6 / OPTICS EXPRESS  7056



zone, and the RHybrid algorithm did not only reduce the overall e as shown in Fig. 3 but also 
the peak error. 

 

Fig. 4. Distribution of reconstruction errors for phantoms shown in Fig. 2. 

As seen from Fig. 2 to Fig. 4, both ART and the hybrid algorithm can reconstruct all 
phantoms with reasonable fidelity, and the application of regularization significantly 
improved the fidelity. In all our numerical tests, the RHybrid algorithm yielded best 
reconstructions with smallest e, and was chosen for the rest of the work. The regularization 
used here is a so-called total variation (TV) regularization as described in [30]. The TV of the 
target function F is defined as: 

 2 2 2

, , 1, , , , , 1, , , , , 1

, ,

( ) ( ) ( ) ( )
x y z x y z x y z x y z x y z x y z

x y z

TV i i i i i i i i i i i i i i i i i i

i i i

R F F F F F F F
− − −

= − + − + −  (5) 

According to Eq. (5), the TV of F represents the summation of the gradient magnitude of F 
over all voxels. Inclusion of RTV in the reconstruction can preserve the smoothness or the 
edges of the sought F [30]. Therefore, as expected, the improvement was more dramatic on 
phantoms 1-3 than phantom 4, because phantoms 1 and 2 have clear edges and phantom 3 is 
smooth and continuous. In the RHybrid algorithm, the RTV term as described in Eq. (5) is 
simply used in Eq. (3). In the RART algorithm, the RTV term is minimized at the end of each 
ART iteration with respect to F, and the updated F is used as the input for the next ART 
iteration. Note that in this approach, the regularization and the ART iteration (which 
minimizes the difference between the calculated projections and the measurements) are 
essentially performed separately. Whereas in contrast, the RHybrid algorithm considers the 
regularization and the minimization of the difference between calculated and measured 
projections simultaneously (or holistically). We believe this contributes to the smaller e 
obtained by the RHybrid than the RART algorithm. 

4. Numerical verification 

Extensive numerical simulations have been conducted to verify the use of the RHybrid 
algorithm using various phantoms and noises. Figure 5 summarizes the results obtained on 
phantom 2 and 4 shown in Fig. 2, with phantom 2 representing one of the experimental 
flames tested in this work and phantom 4 a turbulent flame. These simulations were 
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performed under various noise levels, ranging from 0% to 10%, intended to encompass the 
range of noise expected in practical measurements. The experimental noise in this work is 
estimated to be about 5%. These results were obtained under similar configurations as those 
used in Fig. 2 to Fig. 4. Specifically, 8 projection measurements from 8 randomly chosen 
orientations were used in the reconstruction. But again, once chosen, these view angles were 
used in both the RART and RHybrid algorithms to make the results comparable. 

As seen from Fig. 5, the RHybrid algorithm consistently outperformed the RART 
algorithm in terms of the overall reconstruction error for all phantoms tested at all noise 
levels. Based on these numerical verifications, the RHybrid algorithm was chosen to process 
the data obtained in this work. We have also processed the experimental results shown in 
Section 6 and examined the effects of view angles shown in Section 7 using other inversion 
algorithms, and the trend of the results obtained agreed with those obtained by the RHybrid 
algorithm as reported in Section 5 and 6. 

 

Fig. 5. Comparison of RHybrid and RART at various noise levels. 

Before leaving this section and proceeding to the experiments, note that 1) with accurate 
projections measurements (e.g., with noise level less than 2.5%), both the RART and 
RHybrid algorithms can provide reconstructions with high fidelity, and 2) in this work, the 
lower e from the RHybrid algorithm was achieved at a significantly higher computational cost 
(more than 10 × ) than the RART algorithm. This work solved Eq. (3) using a simulated 
annealing (SA) algorithm [31]. The SA algorithm is well recognized for its ability to 
minimize complicated functions. However, the SA algorithm is a stochastic algorithm and 
suffers from high computational cost, and we have been exploring possible approaches to 
reduce the computational cost of solving Eq. (3). Possible approaches include parallelizing 
the SA algorithm [34], combining SA with proper orthogonal decomposition to reduce the 
dimension of the problem [35], or finding a deterministic algorithm to replace the SA 
algorithm. 

5. Experimental arrangement 

The TC technique was demonstrated using the experimental setup shown in Fig. 6. The setup 
was designed to create flames with controlled patterns so that the TC technique can be 
validated experimentally. The setup used a McKenna burner (illustrated in panels (a) and (b)) 
to produce a stable and disk-like flame with a diameter of ~61 mm and a thickness of ~1 mm. 
Photos of a sample flame taken from the side and top are shown in panels (c) and (d). The 
fuel used in this study is methane (CH4) and the oxidizer is air. To create asymmetric flame to 
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demonstrate the 3D nature of TC technique, a honeycomb was place on the burner (panel (a)). 
The honeycomb’s cells are squares with size of 1.25 × 1.25 mm (panel (b)) and certain cells 
were blocked to create the desired asymmetric pattern. Various patterns have been created 
and studied in this work. For example, phantom 1 shown in Fig. 2 illustrates one of the 
patterns created by blocking two rectangular regions of the honeycomb. Panel (b) of Fig. 6 
here shows another pattern, where we block a rectangular region with a size of 8.75 × 10 mm, 
a column of cells to form a vertical line with 1.25 mm thickness, and two rows of cells to 
form a horizontal line with and 2.5 mm thickness. Phantom 2 shown in Fig. 2 simulates this 
flame. 

 

Fig. 6. Experimental setup for demonstrating the TC technique. 

A CCD camera (PCO Sensicam) was used to take projection measurements of the 
chemiluminescence emitted from CH* radicals in the flame from various view angles 
sequentially. The camera was installed on a rotation stage (Newport 481-A), which was used 
to set the desired pitch angles. The stage was then fixed on an optical rail to adjust r’s and θ’s. 
The lens used has a focal length of 35 mm and the numerical aperture was set at 1.7 during 
the measurements. A band pass filter (Thorlabs MF434-17, 434 ± 8.5 nm) was applied to 
block the background luminosity. Each projection measurement was taken with a 50 ms 
exposure time. Simultaneous measurement from multiple view angles can be achieved using 
multiple cameras as demonstrated elsewhere [23]. The exposure time can be shortened using 
a different camera or different image systems. For example, in our test, an intensified CMOS 
camera (Photron Fastcam SA4) reduced the exposure time to tens of μs with good signal to 
noise ratio. 

In this work, we decided to use one CCD camera to take the projection measurements 
sequentially at a relatively lower temporal resolution to study several fundamental aspects of 
the TC technique, such as the tomographic algorithm, the placement of the view angles, and 
spatial resolution. Other aspects of the TC technique, such as signal level and temporal 
resolution, will be discussed in a separate publication. Using one camera instead of multiple 
cameras eliminates the uncertainty caused by calibration across cameras, and CCD cameras 
provide better linearity than CMOS cameras. The sequential measurements with 50 ms 
exposure time is justified by the stability of the flame, which was measured to be stable 

#175611 - $15.00 USD Received 5 Sep 2012; revised 1 Nov 2012; accepted 1 Jan 2013; published 13 Mar 2013
(C) 2013 OSA 25 March 2013 / Vol. 21,  No. 6 / OPTICS EXPRESS  7059



within 4% both in the short term (~50 ms) and long term (~10 minutes, the time needed to 
measure a complete set of projections). The stability of the flame represents the major 
uncertainty in the projections, which is the reason that results shown in Fig. 2 to Fig. 4 were 
obtained with 5% artificial noise. 

As mentioned before, the purpose of this setup is to create controlled flame patterns. 
These patterns will be binary under ideal conditions, i.e., if the flame is perfectly uniform and 
blocked area creates a step change of the concentration of target radical (CH* in this work). 
However, such an ideal binary patterns were only approximated in our experiments due to 
convection, diffusion, and disturbance of the flow caused by the blockage. These non-ideal 
conditions are manifested in panels (c) and (d). For instance, if the flame pattern is perfectly 
binary, then the blocked column should be a completely dark region when viewed from the 
side as shown in panel (c). In practice, this region was darker (i.e., with lower CH* 
concentration) relative to other regions, but not completely dark (i.e., with zero CH* 
concentration). Also, the edges of the block region are not ideally sharp and uniform. As seen 
from panel (d), the blockage increases the flow rate in the adjacent cells and creates a non-
uniform distribution in that region. 

Despite of these above non-ideal features, the flames created via this approach still 
provide us with well-controlled patterns, and it is highly desirable to have such experimental 
“phantoms” to quantitatively validate the TC technique. The quantitative value of these 
experimental phantoms will be further elucidated later when we report the tomographic 
results. 

6. Experimental results 

Projection measurements were performed on flames created using the setup shown in Fig. 6 
from various view angles. Eight of these view angles are listed in Table 1. The orientation (θ 
and φ) and location (r) of the projection measurements were determined using the method 
described in [36] using a reference target. A pitch angle was defined as 90°-φ to describe the 
angle formed by the optical axis with the x-y plane. The location r was defined as the distance 
from the center of the burner to the center of the camera lens. 

Table 1. Orientation and location of the projection measurements. 

Projection index φ (degree) θ (degree) Pitch angle r (cm) 
1 74.88 −46.76 15.12 55.36 
2 71.20 −10.40 18.80 42.20 
3 71.76 45.40 18.24 42.80 
4 74.84 86.40 15.16 55.28 
5 71.20 90.80 18.80 42.20 
6 74.60 121.60 15.40 54.60 
7 71.04 153.04 18.96 42.00 
8 74.60 176.40 15.40 54.60 

Figure 7 shows a sample reconstruction using the projections tabulated above. In this 
reconstruction, the domain of interested (DOI) considered was a cylindrical region with a 
diameter of 67.5 mm and a height of 2.5 mm to encompass the flame (the flame has a 
diameter of ~61 mm and a thickness of ~1 mm). The DOI was descretized into 54 (x 
direction) × 54 (y direction) × 10 (z direction) voxels, resulting in a total of 29,160 voxels. 
Each voxel has a dimension of 1.25 mm in both the x and y directions and 0.25 mm in the z 
direction. The origin of the x-y-z coordinate is at the center of the burner as shown in Fig. 6. 

Figure 7 shows the reconstructed flame at four different z positions. Panel (a) shows the 
reconstruction for the first layer right above the surface of the honeycomb (i.e., 0 <z<0.25 
mm), and panel (b) through (d) the second, fourth, and eighth layers, respectively. Note that 
the results are displayed in layers simply for the sake of convenience and clarity. All 
algorithms in this work are implemented in 3D, and these algorithms solve the TC problem as 
a 3D problem. The results in this work were not obtained by stacking a series of 2D solutions 
layer by layer. The advantages of decomposing a 3D problem into a series of 2D problems 
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and solving them separately include simplicity and reduced computational requirements; 
however this approach also has disadvantages, both practical and fundamental. Practically, 
the experiments need to be designed to allow the conversion of 3D problems to 2D problems, 
resulting in complicated hardware, alignment, and loss of signal [20, 22]. A fundamental 
disadvantage involves consideration of regularization. When the problem is solved in 3D, 
regularization in all three directions can be considered simultaneously, which is difficult or 
even impossible when the problem is solved as a series of 2D problems. 

 

Fig. 7. Reconstructed flame at different z positions. 

As shown in Fig. 7, the flame pattern created by the blockage was clearly resolved in the 
first two layers above the honeycomb. The TC technique successfully reconstructed the size 
and thickness of the flame, the size, shape, and location of the blocked regions. As the flame 
propagates further in the z direction, transport phenomena cause the pattern to be blurred, as 
suggested by the reconstruction at the fourth and eighth layers shown in panels (c) and (d), 
respectively. 

Figure 8 analyzes the reconstruction fidelity quantitatively by examining the size of the 
blocked areas. Panel (a) through (d), respectively, shows the thickness of the blocked column 
and row, and the width and the height of the blocked rectangle of the flame pattern. These 
quantitative information were obtained by calculating the gradient of the reconstruction at 
each layer (e.g., those shown in Fig. 7) to determine locations of sharpest CH* concentration 
change, which were then subsequently used to calculate the size of the blocked areas as 
shown here in Fig. 8. At each layer, multiple values were obtained along the edge of the block 
region; and the square symbol represents the median of these values for a given layer and the 
error bar represents the std (standard deviation) of these values. 

Figure 8 further elucidates the visual observations made in Fig. 7, illustrating the blurring 
of the flame pattern as it propagates along the z direction. For example, panel (a) shows the 
reconstructed thickness of the blocked column, created by blocking on column of the cells on 
the honeycomb. As mentioned in Section 5, these cells are square and have a size of ∆l = 1.25 
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mm. The reconstructions yielded a median thickness of 1.25 mm for the first three layers, 
equal to the thickness of the blocked region, illustrating the limited blurring caused by 
transport. The std on these three layers were caused by a combination of four factors: the 
blurring due to transport, the non-uniformities caused by the blockage, measurement 
uncertainty, and the reconstruction artifacts. We argue that the first two factors are the major 
causes based on the simulations results reported in Fig. 2 and Fig. 5. Those results 
demonstrated that the RHybrid algorithm can reconstruct the thickness of a block column 
accurately under the measurement uncertainty expected here. Starting on the fourth layer, the 
difference between the reconstructed thickness and ∆l gradually increases with the layer 
index, and so does the std. Such increasing difference and std suggest the more and more 
pronounced blurring of the flame pattern caused by the transport phenomena. Similar 
interpretations can be made for results shown in panels (b) to (d). 

 

Fig. 8. The reconstructed size of blocked areas. 

These results demonstrate the TC’s ability to resolve flame structures (and also potentially 
transport physics). Here we focus on the spatial resolution of the TC technique. Sub-
millimeter spatial resolution has been reported previously [23] for the TC technique based on 
a combination of theoretical analysis and experimental observations. The results in panel (a) 
of Fig. 8, in contrast, provide direct experimental data to demonstrate a spatial resolution on 
the order of 1.25 mm. Research work is underway to experimentally investigate the spatial 
resolution of the TC technique beyond 1.25 mm using the current experimental approach. 

7. Advantages of random view orientation 

This section discusses the effects of view orientations from which the projections are 
obtained. Our results suggest that for an unknown flame, it is advantageous to use random 
view orientations rather than coplanar orientations as typically used in the past. These 
findings are expected to illustrate the importance of optimizing view orientations, which is of 
both practical and fundamental relevance. Practically, combustion applications often have 
limited optical access and such access should be designed and used optimally. Fundamentally, 
it is desirable that projections obtained from different view orientations, especially when only 
a small number of view orientations are available, should provide complementary 
information, not redundant information. 

#175611 - $15.00 USD Received 5 Sep 2012; revised 1 Nov 2012; accepted 1 Jan 2013; published 13 Mar 2013
(C) 2013 OSA 25 March 2013 / Vol. 21,  No. 6 / OPTICS EXPRESS  7062



Here, coplanar is defined as the TC configuration where the optical axes along which 
projections are obtained fall on the same plane. Such coplanar configuration seems to be 
natural, especially for a flame with open optical access. However, a coplanar configuration 
essentially poses a restriction on the view orientations, and may not provide the optimal 
information for the reconstruction. As a simple example, consider the flame pattern shown in 
panels (c) and (d) of Fig. 6. For this flame, views from the side (with a 0° pitch angle) largely 
provide redundant information (e.g., about the shape, size, and thickness of the flame). In 
contrast, a view from the top (with a 90° pitch angle) provides a wealth of key information 
about the flame structure: the shape, size, and location of the blocked areas besides the shape 
and size of the flame. As a result, two views, one from the side and another from the top, 
provide complimentary information for the reconstruction, which can be much more valuable 
than many coplanar views taken from the side. Therefore, generally, when the target flame is 
unknown, projections taken from random view orientations are statistically more likely to 
provide complementary information than coplanar view orientations. From a mathematical 
point of view, arbitrary view angles are more likely to provide projections that are more 
linearly independent from each other and reduce the ill-posedness of the problem. 

 

Fig. 9. Panel (a): comparison of e using coplanar and arbitrary view angles from numerical 
simulation. Panel (b): Reconstructed thickness using coplanar and non-coplanar view angles 
from experimental data. 

The results shown in Fig. 9 confirm these intuitive arguments using both simulation (panel 
(a)) and experimental (panel (b)) studies. In panel (a), simulations were conducted using the 
RART and RHybrid algorithm to reconstruct the phantoms shown in Fig. 2 using eight 
projections, and 5% of artificial noise was added to the projections. Two sets of projections 
were used here: a set generated under the coplanar configuration and another set generated 
randomly. As can be seen, the reconstruction error from the coplanar configuration is 
consistently and substantially larger than that from the random view orientations. The 
reconstruction error from the coplanar configuration is also substantially larger than those 
reported in Fig. 3, which used randomly generated view orientations. 

In panel (b), the experimentally-measured projections were used to reconstruct the flame 
patter by the RHybrid algorithm. We first used projections all obtained with a pitch angle of 
0° (a coplanar configuration). Under such coplanar configuration, eight projections were 
insufficient to produce satisfactory reconstruction. Panel (b) shows the reconstructed 
thickness of the two blocked rows using sixteen coplanar projections. To elucidate the 
advantage of random orientations, we then used eight projections, randomly picked from a 
pool of projections measured at the orientations shown in Table 1 and also 0° degree pitch 
angle. As shown in panel (b), these eight projections provide complementary information to 
reconstruct the thickness significantly more accurately than the sixteen coplanar projections. 
Examination of other blocked areas reveals similar or more dramatic superiority of the 
randomly chosen orientations over the coplanar orientations. 
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Lastly, we make two comments before summarizing the paper. First, results in this work, 
both numerical and experimental, have all been obtained assuming no a priori information 
except that the sought distributions of the radicals are non-negative and bounded. When more 
a priori information is available, for example about the shape or geometry of the flame, it 
may no longer be optimal to use random orientations. Experiments should be designed to 
exploit such information. Second, we would like to iterate the value of the controlled flame 
patterns created in this work, in spite of the non-ideal features as mentioned earlier in Section 
5. As seen from the results reported in Sections 6 and 7, these controlled patterns enable 
metrics which can be used to experimentally quantify critical aspects of the TC technique, 
such as the spatial resolution and reconstruction accuracy. 

8. Summary 

In summary, this work discusses a 3D combustion diagnostic based on tomographic 
chemiluminescence (TC). The TC techniques have several distinct advantages when 
compared to other non-intrusive laser diagnostics. The major contributions of this work are 
threefold. First, a hybrid algorithm is developed to solve the 3D TC problem. The algorithm is 
validated by extensive numerical simulations and experimental data. The hybrid algorithm 
outperformed other algorithms that we surveyed in terms of the reconstruction error, and was 
demonstrated to perform reconstruction with high fidelity using a limited number of view 
angles in the presence of noises. Second, a set of experiments were designed to both 
demonstrate the 3D TC technique, and also to examine its performance quantitatively. The 
experimental approach involves creating controlled flame patterns using a McKenna burner. 
These flame patterns enable quantifiable metrics to experimentally examine several critical 
aspects of the TC technique, such as the spatial resolution and reconstruction accuracy. The 
experimental results provide data that directly demonstrate a spatial resolution on the order of 
1.25 mm and reconstruction with good fidelity with a limited number of projections. Third, 
based on the reconstruction algorithm and experimental results, we investigated the effects of 
the view orientations. The results suggested that for an unknown flame, it is better to use 
projections measured from random orientations than restricted orientations (e.g., coplanar 
orientations) because projections from random orientations are statistically more likely to 
provide complimentary information. Lastly, note that the second and third contributions are 
independent of the first one. We have examined our experimental data and the effects of view 
angles using different inversion algorithms, and the trend of the results obtained agreed with 
those obtained by the hybrid algorithm as reported. 
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